

Actuator LA33
 Data sheet

LA33

The actuator LA33 is a true mid-size actuator that combines compact design and high power in one solution, fit for use in the most extreme environments. A thorough and demanding testing programme forms the basis for the maintenance-free and long lasting performance of this solid and high-quality actuator.

INTEGRATED CONTROLLER

This TECHLINE ${ }^{\oplus}$ actuator comes with IC - Integrated controller.
For more information on our IC options, please see: https://www.linak.com/segments/techline/tech-trends/integrated-control/

Features:

- 12 or 24 V DC Permanent magnetic motor
- Thrust from 1,500 N-5,000 N depending on gear ratio and spindle pitch
- Max. speed up to $35 \mathrm{~mm} / \mathrm{sec}$. depending on load and spindle pitch
- Stroke length from 100 to 600 mm
- Built-in endstop switches
- Non rotating piston rod eye
- Protection class: IP66 (dynamic) and IP69K (static)

Options in general:

- Exchangeable cables in different lengths
- Hall effect sensor
- Extra socket
- IC options including:
- IC - Integrated Controller
- Integrated Parallel Controller
- LIN bus communication
- CAN bus communication
- Analogue or digital feedback for precise positioning
- Proportional control
- Endstop signals
- PC configuration tool

Usage:

- Duty cycle at 600 mm stroke is max. 20\%
- Ambient operating temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, full performance from $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Contents

Chapter 1

Specifications 4
Technical specifications 5
Load versus Stroke Length 6
Stroke and built-in tolerances 6
LA33 Dimensions 7
Built-in dimensions 8
LA33 Piston Rod Eyes 9
LA33 Back fixtures 10
Back fixture orientation 11
Manual hand crank 12
Cable dimensions 12-13
Y-cable dimensions 12
Power cable dimensions 13
Signal cable dimensions 13
Speed and current curves. 14-15
Chapter 2
I/O specifications:
Actuator without feedback 16
Actuator with:
Endstop signal output 16
Endstop signals and relative positioning -Single Hall 17
Endstop signals and absolute positioning - Analogue feedback 18
Endstop signals and absolute positioning - PWM. 19
IC Basic. 20
IC Advanced - with BusLink 21-22
Proportional control 23-24
Parallel 25
CAN bus 26
IC options overview 27
Feedback configurations available for IC Advanced, Proportional and Parallel 28
Actuator configurations available for IC Advanced, Proportional and Parallel 29
System combination possibilities for LA33 IC Advanced 30
Chapter 3
Environmental tests - Climatic 31-32
Environmental tests - Mechanical 32
Environmental tests - Electrical 33

Chapter 1

Specifications	
Motor:	Permanent magnet motor 12 or 24V DC
Cable:	Motor: 2×14 AWG PVC cable Control: 6×20 AWG PVC cable
Gear ratio:	2 different gear ratios available in steel
Brake:	Integrated brake ensures a high self-locking ability. The brake is deactivated when the actuator is powered in order to obtain a high efficiency
Hand crank:	As a standard feature the actuator can be operated manually
Housing:	The housing is made of casted aluminium, coated for outdoor use and in harsh conditions
Spindle part:	Outer tube: Extruded aluminium anodised Inner tube: Stainless steel AISI304/SS2333 Acme spindle: Trapezoidal spindle with high efficiency
Temperature range:	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \\ & \text { Full performance }+5^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \end{aligned}$
Storage temperature:	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Weather protection:	Rated IP66 for outdoor use. Furthermore, the actuator can be washed down with a high-pressure cleaner (IP69K)
Noise level:	73 dB (A) measuring method DS/EN ISO 8746 actuator not loaded

Be aware of the following two symbols throughout this product data sheet:

Recommendations

Failing to follow these instructions can result in the actuator suffering damage or being ruined.

(1) Additional information

Usage tips or additional information that is important in connection with the use of the actuator.

Technical specifications
LA33 with 12 V motor

LA33 with 24 V motor

* The typical values can have a variation of $\pm 20 \%$ on the current values and $\pm 10 \%$ on the speed values.

Measurements are made with an actuator in connection with a stable power supply and an ambient temperature at $20^{\circ} \mathrm{C}$.
** There are limitations on the stroke length if you need full load, please see "LA33 Load vs. stroke length"

- Self locking ability

To ensure maximum self-locking ability, please be sure that the motor is shorted when stopped.
Actuators with integrated controller provide this feature, as long as the actuator is powered.

- When using soft stop on a DC-motor, a short peak of higher voltage will be sent back towards the power supply. It is important when selecting the power supply that it does not turn off the output, when this backwards load dump occurs.

Load versus stroke length

- For applications that only operate in pull the limitations are 600 mm stroke and 5,000N load
- Safety factor 2

Stroke and built-in tolerances

End stop options	Descriptions	Stroke tolerance	Example for 200 mm stroke	BID tolerance	Example for 360 mm BID
All	With built-in limit switches or Integrated Controller	$+/-2 \mathrm{~mm}$	198 to 202	$+/-4 \mathrm{~mm}$	356 to 364

Built-in dimensions

Piston rod	" 1 and A" / to the centre of the hole		" 2 and B" / to the centre of the hole		" 5 " / from the surface		"C and D" / to the centre of the hole	
Back fixture	$\begin{aligned} & \text { Stroke } \\ & <=300 \end{aligned}$	Stroke > 300	$\begin{aligned} & \text { Stroke } \\ & <=300 \end{aligned}$	Stroke > 300	$\begin{aligned} & \text { Stroke } \\ & <=300 \end{aligned}$	$\begin{aligned} & \text { Stroke } \\ & >300 \end{aligned}$	$\begin{aligned} & \text { Stroke } \\ & <=300 \end{aligned}$	Stroke $\stackrel{>}{>}$
"1" and "2" / to the centre of the hole	160	210	160	210	157*	207*	171	221
" 3 " and " 4 " / to the centre of the hole	160	210	160	210	157*	207*	171	221
" A " and " B " / to the centre of the hole	160	210	160	210	157*	207*	171	221
"C" and "D" / to the centre of the hole	160	210	160	210	157*	207*	171	221

* These built-in dimensions are measured according to the illustration below.

LA33 Piston Rod Eyes

Please note, that when ordering AISI (304 and up) piston rod eye and back fixture - stainless steel screws and nuts are not automatically included.

Option " 1 " and "A"
Piston 0331036, Zinc coated steel
Piston 0331140, Stainless steel AISI 304

Option "C"
Piston 0351043, Stainless steel AISI 304

Option "5"
Piston 0231094, Stainless steel AISI 304

Option "2" and "B"
Piston 0331014, Zinc coated steel
Piston 0331139, Stainless steel AISI 304

Option "D"
Piston 0351035, Stainless steel AISI 304

The Piston Rod Eye is only allowed to turn 0-90 degrees

Option "1" and "2"
LINAK P/N: 0331160, Zink coated steel Option "A" and "B"
LINAK P/N: 0331158, Stainless steel AISI 304

Option "3" and "4"
LINAK P/N: 0331159, Zink coated steel
Option "C" and "D"
LINAK P/N: 0331157, Stainless steel AISI 304

Back fixture orientation

" 90 " Degrees

NB. All with tolerance of $\pm 4^{\circ}$

Manual hand crank

The manual hand crank can be used in the case of power failure.

The cover over the Allen Key socket must be unscrewed before the Allen Key can be inserted and the Hand Crank operated.

Hand Crank Torque: 6-8 Nm
Hand Crank rpm: Max. 65

- The power supply has to be disconnected during manual operation.
- If the actuator is operated as a Hand crank, it must only be operated by hand, otherwise there is a potential risk of overloading and hereby damaging the actuator.
- Actuators with absolute positioning must be initialised after use of the manual handcrank, because their positioning will be displaced when the power is disconnected.
- IC actuators is supplied without manual hand crank.

Cable dimensions

Y-cable dimensions:

Cable dimensions

Power cable dimensions:

Signal cable dimensions:

Violet:	$0.5 \mathrm{~mm}^{2}$	20 AWG*	
Black:	$0.5 \mathrm{~mm}^{2}$	20 AWG	
Red:	$0.5 \mathrm{~mm}^{2}$	20 AWG	
Yellow:	$0.5 \mathrm{~mm}^{2}$	20 AWG	
Green:	$0.5 \mathrm{~mm}^{2}$	20 AWG	
White:	$0.5 \mathrm{~mm}^{2}$	20 AWG	

[^0]
Speed and current curves - 12V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

Speed and current curves - 24V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

LA33 24V - current vs thrust

LA33 24V - speed vs thrust

Chapter 2

I/O specifications: Actuator without feedback

Input/Output	Specification	Comments
Description	Permanent magnetic DC motor.	12 or 24VDC (+/-) $12 \mathrm{~V} \pm 20 \%$ $24 \mathrm{~V} \pm 10 \%$ Under normal conditions: 12 V, max. 12A depending on load 24 V, max. 9A depending on load
Brown	To extend actuator: Connect Brown to positive Connect Blue to negative To retract actuator: Connect Brown to negative Connect Blue to positive	
Blue	Not to be connected	Not to be connected Red
Bot to be connected	Not to be connected	
Green	Not to be connected	
Yellow	Not to be connected	
Violet		

I/O specifications: Actuator with endstop signal output

Input/Output	Specification	Comments
Description	The actuator can be equipped with electronically controlled endstop signals out.	
Brown	$\begin{aligned} & 12 \text { or } 24 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ Under normal conditions: 12V, max. 13A depending on load 24V, max. 9A depending on load	To extend actuator: Connect Brown to positive Connect Blue to negative To retract actuator: Connect Brown to negative Connect Blue to positive
Blue		
Red	Signal power supply (+) $12-24 \mathrm{VDC} \pm 10 \%$	Current consumption: Max. 40 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{I N}}-2 \mathrm{~V}$ Source current max. 100 mA NOT potential free
Yellow	Endstop signal in	
Violet	Not to be connected	
White	Not to be connected	

I/O specifications: Actuator with endstop signals and relative positioning - Single Hall

Input/Output	Specification	Comments
Description	The actuator can be equipped with Single Hall that gives a relative positioning feedback signal when the actuator moves.	
Brown Blue	$\begin{aligned} & 12 \text { or } 24 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ Under normal conditions: 12V, max. 13A depending on load 24 V , max. 9A depending on load	To extend actuator: Connect Brown to positive Connect Blue to negative To retract actuator: Connect Brown to negative Connect Blue to positive
Red	Signal power supply (+) $12-24 \mathrm{VDC} \pm 10 \%$	Current consumption: Max. 40 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{I}}-2 \mathrm{~V}$ Source current max. 100 mA NOT potential free
Yellow	Endstop signal in	
Violet	Single Hall output (PNP) Movement per Single Hall pulse: 33090: Actuator $=0.3 \mathrm{~mm}$ per count 33150: Actuator $=0.5 \mathrm{~mm}$ per count 33200: Actuator $=1.1 \mathrm{~mm}$ per count Frequency: Frequency is up to 125 Hz on Single Hall output depending on load and spindle.Overvoltage on motor can result in shorter pulses.	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Max. current output: 12 mA Max. 680nF N.B. For more precise measurements, please contact your local LINAK subsidiary. Low frequency with a high load. Higher frequency with no load.
	Diagram of Single Hall: Input	Single Hall output Fig. 1
White	Not to be connected	

I/O specifications: Actuator with endstop signals and absolute positioning - Analogue feedback

Input/Output	Specification	Comments
Description	The actuator can be equipped with electronic circuit that gives an analogue feedback signal when the actuator moves.	
Brown	$\begin{aligned} & 12 \text { or } 24 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ Under normal conditions: 12V, max. 13A depending on load 24V, max. 9A depending on load	To extend actuator: Connect Brown to positive Connect Blue to negative To retract actuator: Connect Brown to negative Connect Blue to positive
Blue		
Red	Signal power supply (+) $12-24 V D C \pm 10 \%$	Current consumption: Max. 60 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Source current max. 100 mA NOT potential free
Yellow	Endstop signal in	
Violet	Analogue feedback 4-20mA	Tolerances $+1-0.2 \mathrm{~mA}$ Transaction delay 20 ms Linear feedback 0.5\% Output: Source Serial resistance: 12 V max 300 ohm 24 V max 900 ohm It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Not to be connected	

I/O specifications: Actuator with endstop signals and absolute positioning - PWM

Input/Output	Specification	Comments
Description	The actuator can be equipped with electronic circuit that gives an analogue feedback signal when the actuator moves.	
Brown	$12 \text { or 24VDC (+/-) }$ $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ Under normal conditions: 12V, max. 13A depending on load 24V, max. 9A depending on load	To extend actuator: Connect Brown to positive Connect Blue to negative To retract actuator: Connect Brown to negative Connect Blue to positive
Blue		
Red	Signal power supply (+) $12-24 \mathrm{VDC} \pm 10 \%$	Current consumption: Max. 60 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{I}}-2 \mathrm{~V}$ Source current max. 100 mA NOT potential free
Yellow	Endstop signal in	
Violet	Digital output feedback (PNP) $\begin{aligned} & 10-90 \% \\ & 20-80 \% \end{aligned}$	Output voltage min. $\mathrm{V}_{\mathbb{I N}}-2 \mathrm{~V}$ Tolerances +/- 2\% Max. current output: 12 mA Frequency: 75 Hz
		It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Not to be connected	

I/O specifications: Actuator with IC Basic

Input/Output	Specification	Comments
Description	Easy to use interface with integrated power electronics (H -bridge). The version with "IC option" cannot be operated with PWM (power supply).	
Brown	$12-24 V D C+(V C C)$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 15A 24V, current limit 10A	Note: Do not change the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$	If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to: 20A for 12 V 15A for 24V
Red	Extends the actuator	On/off voltages:$\begin{aligned} & >67 \% \text { of } \mathrm{V}_{\mathbb{I N}}=\mathrm{ON} \\ & <33 \% \text { of } \mathrm{V}_{\mathbb{N}}=0 \mathrm{FF} \\ & \text { Input current } \approx 10 \mathrm{~mA} \end{aligned}$
Black	Retracts the actuator	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$ Source current max. 100 mA Endstop signals are NOT potential free. Endstop signals can be configured with BusLink software according to any position needed When configuring virtual endstop, it is not necessary to choose the position feedback EOS and virtual endstop will work even when feedback is not chosen
Yellow	Endstop signal in	
Violet	Not to be connected	
White	Not to be connected	

I/O specifications: Actuator with IC Advanced - with BusLink

Input/Output	Specification	Comments
Description	Easy to use interface with integrated power electronics (H-bridge). The actuator can also be equipped with electronic circuit that gives an absolute or relative feedback signal. IC Advanced provides a wide range of possibilities for customisation. The version with "IC option" cannot be operated with PWM (power supply).	
Brown	$12-24 \mathrm{VDC}+(\mathrm{VCC})$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 15A 24V, current limit 10A	Note: Do not change the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing Current limit levels can be adjusted through BusLink
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$	If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to: 20A for 12 V 15A for 24V
Red	Extends the actuator	On/off voltages:$\begin{aligned} & >67 \% \text { of } \mathrm{V}_{\mathbb{N}}=0 \mathrm{~N} \\ & <33 \% \text { of } \mathbb{V}_{\text {N }}=0 \mathrm{FF} \\ & \text { Input current } \approx 10 \mathrm{~mA} \end{aligned}$
Black	Retracts the actuator	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$ Source current max. 100 mA Endstop signals are NOT potential free. Endstop signals can be configured with BusLink software according to any position needed When configuring virtual endstop, it is not necessary to choose the position feedback EOS and virtual endstop will work even when feedback is not chosen
Yellow	Endstop signal in (Option 1) Constantly high (Option 2)	

I/O specifications: Actuator with IC Advanced - with BusLink

Input/Output	Specification	Comments
Violet	Analogue feedback ($0-10 \mathrm{~V}$): Configure any high/low combination between 0-10V	Ripple max. 200 mV Transaction delay 20 ms Linear feedback 0.5\% Max. current output. 1 mA
	Single Hall output (PNP) Movement per Single Hall pulse: 33090: Actuator $=0.3 \mathrm{~mm}$ per count 33150: Actuator $=0.5 \mathrm{~mm}$ per count 33200: Actuator $=1.1 \mathrm{~mm}$ per count Frequency: Frequency is up to 125 Hz on Single Hall output depending on load and spindle. Overvoltage on the motor can result in shorter pulses	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$ Max. current output: 12 mA Max. 680nF Open collector source current max. 12mA
	Digital output feedback PWM: Configure any high/low combination between 0-100\%	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Frequency: $75 \mathrm{~Hz} \pm 10 \mathrm{~Hz}$ as standard, but this can be customised. Duty cycle: Any low/high combination between 0 and 100 percent. Open collector source current max. 12mA
	Analogue feedback (4-20mA): Configure any high/low combination between $4-20 \mathrm{~mA}$	Tolerances $\pm 0.2 \mathrm{~mA}$ Transaction delay 20 ms Linear feedback 0.5\% Output: Source Serial resistance: 12 V max. 300 ohm 24 V max. 900 ohm
	All absolute value feedbacks ($0-10 \mathrm{~V}, \mathrm{PWM}$ and 4-20mA)	Standby power consumption: $\begin{aligned} & 12 \mathrm{~V}, 85 \mathrm{~mA} \\ & 24 \mathrm{~V}, 50 \mathrm{~mA} \end{aligned}$ It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Signal GND	

The BusLink software tool is available for IC Advanced and can be used for:
Diagnostics, manual run and configuration.
Please note that the BusLink cables must be purchased separately from the actuator!

Item number for BusLink cable kit: 0367999 (adaptor + USB2Lin)

I/O specifications: Actuator with proportional control

Input/Output	Specification	Comments
Description	Easy to use interface with integrated power electronics (H-bridge). The actuator is speed controlled by means of a PWM or $4-20 \mathrm{~mA}$ signal. Proportional provides a wide range of possibilities for customisation.	erser
Brown	$12-24 V D C+(V C C)$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12 V , current limit 15A 24 V , current limit 10A	Note: Do not change the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to: 20A for 12 V 15A for 24V
Blue	$12-24 \mathrm{VDC} \text { - (GND) }$ Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$	
Red Black	PWM:	Signal levels: $\begin{aligned} & >10 \mathrm{~V}=\text { High } \\ & <2 \mathrm{~V}=\text { Low } \end{aligned}$ with reference to power GND (blue) Equivalent input resistance $\approx 22 \mathrm{k}$ Frequency: Min. 100 Hz Max. 1000 Hz Overcurrent protected, reverse voltage protected
	4-20mA:	Sinking current with reference to power GND (blue) Common mode voltage: GND to V supply Equivalent input resistance $\approx 1350 \mathrm{hm}$ Overcurrent protected, reverse voltage protected
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Source current max. 100mA Endstop signals are NOT potential free. Endstop signals can be configured with BusLink software according to any position needed.
Yellow	Endstop signal in	When configuring virtual end stop, it is not necessary to choose the position feedback EOS and Virtual end stop will work even when feedback is not chosen

I/O specifications: Actuator with proportional control

Input/Output	Specification	Comments
Violet	Analogue feedback ($0-10 \mathrm{~V}$): Configure any high/low combination between 0-10V	Ripple max. 200 mV Transaction delay 20 ms Linear feedback 0.5\% Max. current output. 1mA
	Single Hall output (PNP) Movement per Single Hall pulse: 33090: Actuator $=0.3 \mathrm{~mm}$ per count 33150: Actuator $=0.5 \mathrm{~mm}$ per count 33200: Actuator $=1.1 \mathrm{~mm}$ per count Frequency: Frequency is up to 125 Hz on Single Hall output depending on load and spindle. Overvoltage on the motor can result in shorter pulses	Output voltage min. $\mathrm{V}_{\mathbb{I}}-2 \mathrm{~V}$ Max. current output: 12 mA Max. 680nF
	Digital output feedback PWM: Configure any high/low combination between 0-100\%	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Frequency: $75 \mathrm{~Hz} \pm 10 \mathrm{~Hz}$ as standard, but this can be customised. Duty cycle: Any low/high combination between 0 and 100 percent. Open collector source current max. 12mA
	Analogue feedback (4-20mA): Configure any high/low combination between 4-20mA	Tolerances $\pm 0.2 \mathrm{~mA}$ Transaction delay 20 ms Linear feedback 0.5\% Output: Source Serial resistance: 12 V max. 300 ohm 24V max. 900 ohm
	All absolute value feedbacks ($0-10 \mathrm{~V}, \mathrm{PWM}$ and 4-20mA)	Standby power consumption: $\begin{aligned} & 12 \mathrm{~V}, 85 \mathrm{~mA} \\ & 24 \mathrm{~V}, 50 \mathrm{~mA} \end{aligned}$ It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Signal GND	

I/O specifications: Actuator with Parallel

Input/Output	Specification	Comments
Description	Parallel drive of up to 8 actuators. A master actuator with an integrated H -bridge controller controls up to 7 slaves. The version with "IC option" cannot be operated with PWM (power supply).	
Brown	$12-24 V D C+(V C C)$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 15A 24 V , current limit 10A	Note: Do not change the power supply polarity on the brown and blue wires! The parallel actuators can run on one OR separate power supplies Power supply GND (-) is electrically connected to the housing
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$	Current limit levels can be adjusted through BusLink (only one actuator at a time for parallel) If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 20 A for 12 V 15 A for 24 V
Red	Extends the actuator	On/off voltages: $\begin{aligned} & >67 \% \text { of } V_{\mathbb{N}}=0 \mathrm{~N} \\ & <33 \% \text { of } \mathbb{V}_{\text {IN }}=0 \mathrm{FF} \\ & \text { Input current } \approx 10 \mathrm{~mA} \end{aligned}$
Black	Retracts the actuator	It does not matter where the in/out signals are applied. You can either choose to connect the signal cable to one actuator OR you can choose to connect the signal cable to each actuator on the line. Either way this will ensure parallel drive
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Source current max. 100mA
Yellow	Endstop signal in	Endstop signals are NOT potential free. Endstop signals can be configured with BusLink software according to any position needed
Violet	Parallel communication: Violet cords must be connected together	Standby power consumption: $\begin{aligned} & 12 \mathrm{~V}, 85 \mathrm{~mA} \\ & 24 \mathrm{~V}, 50 \mathrm{~mA} \end{aligned}$ No feedback available during parallel drive
White	Signal GND: White cords must be connected together	

The BusLink software tool is available for Parallel and can be used for:
Diagnostics, manual run and configuration.
Please note that the BusLink cables must be purchased separately from the actuator!
Item number for BusLink cable kit: 0367999 (adaptor + USB2Lin)

I/O specifications: Actuator with CAN bus

Input/Output	Specification	Comments
Description	Compatible with the SAE J1939 standard. Uses CAN messages to command movement, setting parameters and to deliver feedback from the actuator. See the LINAK CAN bus user manual. Actuator identification is provided, using standard J1939 address claim or fixed addresses. See connection diagram, fig. 16, page 66	
Brown	$12-24 V D C+(V C C)$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 15A 24 V , current limit 10A	Note: Do not swap the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing Current limit levels can be adjusted through BusLink
Blue	12-24VDC - (GND) Connect Blue to negative	If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 20A for 12 V and 15 A for 24 V .
Red	Extends the actuator	On/off voltages:$\begin{aligned} & >67 \% \text { of } V_{I N}=0 N \\ & <33 \% \text { of } V_{I N}=0 F F \end{aligned}$
Black	Retracts the actuator	
Green	CAN_L	LA33 with CAN bus does not contain the 120Ω terminal resistor. The physical layer is in accordance with J1939-15.* Speed:Baudrate: 250 kbps Max bus length: 40 meters
Yellow	CAN_H	Max node count: 10 (can be extended to 30 under certain circumstances) Wiring: Unshielded twisted pair Cable impedance: $\quad 120 \Omega(\pm 10 \%)$
Violet	Service interface	Only BusLink can be used as service interface. Use green adapter cable
White	Service interface GND	

* J1939-15 refers to Twisted Pair and Shielded cables. The standard/default cables delivered with LA33 CAN do not comply with this.

IC options overview

	Basic	Advanced	Parallel	Proportional	LIN bus	CAN bus
Control						
12V, 24V supply	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
H-bridge	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Manual drive in/out	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
EOS in/out	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Soft start/stop	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Feedback						
Voltage	-	\checkmark *	-	$\sqrt{*}$	-	-
Current	-	$\downarrow^{* *}$	-	$\sqrt{* *}^{* *}$	-	-
Single Hall	-	$\sqrt{ }$	-	$\sqrt{ }$	-	-
PWM	-	\checkmark *	-	$\sqrt{ }$	-	-
Position (mm)	-	-	-	-	\checkmark	\checkmark
Custom feedback type	-	\checkmark	-	\checkmark	-	-

Monitoring						
Temperature monitoring	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Current cut-off	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

BusLink (...)						
Service counter	-	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Custom soft start/stop	-	$\downarrow^{* * *}$	$\^{* * *}$	$V^{* * *}$	$\^{* * *}$	$\sqrt{* * *}^{* *}$
Custom current limit	-	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Speed setting	-	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
Virtual end stop	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

* Configure any high/low combination between $0-10 \mathrm{~V}$
** Configure any high/low combination between 4-20mA
*** Configure any value between $0-30$ s

Feedback configurations available for IC Advanced, Proportional and Parallel

	Pre-configured	Customised range	Pros	Cons
None			N/A	N/A
PWM Feedback	$\begin{aligned} & 10-90 \% \\ & 75 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0-100 \% \\ & 75-150 \mathrm{~Hz} \end{aligned}$	Suitable for long distance transmission. Effectual immunity to electrical noise.	More complex processing required, compared to AFV and AFC.
Single Hall	N/A	N/A	Suitable for long distance transmission.	No position indication.
Analogue Feedback Voltage (AFV)	0-10V	Any combination, going negative or positive. E.g. $8.5-2.2 \mathrm{~V}$ over a full stroke.	High resolution. Traditional type of feedback suitable for most PLCs. Easy faultfinding. Independent on stroke length, compared to a traditional mechanical potentiometer.	Not recommended for applications with long distance cables or environments exposed to electrical noise.
Analogue Feedback Current (AFC)	4-20mA	Any combination, going negative or positive. E.g. 5.5-18mA over a full stroke.	High resolution. Better immunity to long cables and differences in potentials than AFV. Provides inherent error condition detection. Independent on stroke length, compared to a traditional mechanical potentiometer.	Higher power consumption compared to AVF. Not suitable for signal isolation.
Endstop signal in/out	At physical end stops. Default for IC Advanced.	Any position.	Can be set at any position over the full stroke length.	Only one endstop can be customised.

Actuator configurations available for IC Advanced, Proportional and Parallel

	Pre-configured	Customised range	Description
Current limit inwards*	10A for both current limit directions. (When the current outputs are at zero, it means that they are at maximum value 10A). Be aware: When the actuator comes with current cut-off limits that are factory pre-configured for certain values, the pre-configured values will be the new maximum level of current cut-off. This means that if the current cut-off limits are pre-configured to 7A, it will not be possible to change the current limits through BusLink to go higher than 7A. If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 15 A for 24 V , and 20 A for 12 V , independent of the preconfigured value.	Recommended range: 3A to 10A If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 15 A for 24 V , and 20A for 12 V , indenpendent of the preconfigured value.	The actuator's unloaded current consumption is very close to 4 A , and if the current cut-off is customised below 4 A there is a risk that the actuator will not start. The inwards and outwards current limits can be configured separately and do not have to have the same value.
Current limit outwards*			
Max. speed inwards/ outwards	100% equal to full performance. Please note: for parallel actuators the full performance equals 80% of the max. speed.	Lowest recommended speed at full load: 60\% It is possible to reduce the speed below 60%, but this is dependable on load, power supply and the environment.	The speed is based on a PWM principle, meaning that 100% equals the voltage output of the power supply in use, and not the actual speed.
Virtual endstop inwards	0 mm for both virtual enstop directions. (When the virtual end-	It is only possible to run the actuator with one virtual endstop, either inwards or outwards.	The virtual endstop positions are based on hall sensor technology. The positioning needs to be initialised from time to time,
Virtual endstop outwards	stops are at zero, it means that they are not in use).		by reaching one of the physical endstops of the actuator, which must be available for initialisation.
Soft stop inwards	0.3 sec . for both soft stop directions.	0.3 sec . to 30 sec . 0 sec. can be chosen for hard stop.	It is not possible to configure values between 0.01 sec . to 0.29 sec . This is due to the back-EMF from the motor (increasing the voltage). Be aware that the soft stop value equals the deacceleration time after stop command.
Soft start inwards Soft start outwards	0.3 sec. for both soft start directions.	0 sec . to 30 sec .	Be aware that the soft start value equals the acceleration time after start command. To avoid stress on the actuator, it is not recommended to use 0 sec. for soft start, due to higher inrush current.

Chapter 3

Environmental tests - Climatic

Test	Specification	Comment
Cold test	EN60068-2-1 (Ab)	Storage at low temperature: Temperature: - $40^{\circ} \mathrm{C}$ Duration: 72 h Actuator is not connected/operated Tested at room temperature
		Storage at low temperature: Temperature: $-55^{\circ} \mathrm{C}$ Duration: 24 h Actuator is not connected Tested at room temperature
	EN60068-2-1 (Ad)	Operating at low temperature: Temperature: $-40^{\circ} \mathrm{C}$ Duration: 4 h Tested at room temperature within 5 minutes overload
Dry heat	EN60068-2-2 (Bb)	Storage at high temperature: Temperature: $+85^{\circ} \mathrm{C}$ Duration: 72 h Actuator is not connected/operated Tested at room temperature
	EN60068-2-2 (Bb)	Storage at low temperature: Temperature: $+105^{\circ} \mathrm{C}$ Duration: 24 h Actuator operated at high temperature
Damp heat	EN60068-2-30 (Db)	Damp heat, Cyclic: Relative humidity: 93-98\% High temperature: $+55^{\circ} \mathrm{C}$ in 12 hours Low temperature: $+25^{\circ} \mathrm{C}$ in 12 hours Duration: 21 cycles * 24 hours Actuator is operated during test
Salt mist.	EN ISO 9227	Dynamic salt spray test: Salt solution: 5% sodium chloride (NaCl) Temperature: $35 \pm 2^{\circ} \mathrm{C}$ Duration: 500 h Actuator is operated
Thermal shock		Dunk test: Actuator is heated to $+85^{\circ} \mathrm{C}$ for 4 h and submerged into a $0^{\circ} \mathrm{C}$ cold salt-waterdetergent solution for 2 h Followed by 18 h dry time Duration: 5 cycles

Environmental tests - Climatic

Degrees of protection	EN60529-IP66	IP6X - Dust: Dust-tight, No ingress of dust Actuator is not activated
	EN60529-IP66	IPX6 - Water: Ingress of water in quantities causing harmful effects is not allowed Duration: 100 litres pr. minute in 3 minutes Actuator is not activated
	DIN40050-IP69K	IPX9K: High pressure cleaner Temperature: $+80^{\circ} \mathrm{C}$ Water pressure: 80-100 bar Water flow: 14-16 I/min Duration: 30 sec. each at 4 different angles $0^{\circ}, 30^{\circ}, 60^{\circ}$ and 90° Actuator is not activated Ingress of water in quantities causing harmful effects is not allowed

Environmental tests - Mechanica

Test	Specification	Comment
Mechanical Shock (Handling) - Drop test		3 drops on 6 faces onto a concrete floor. Drop height: 500 mm on all faces
Vibration Random	The specification is based on ISO 16750-3:2012(E) Test VII and should therefore be performed according to IEC 60068-2-64, random vibration. The PSD level is increased in the frequency range from 10 to 400[Hz]	Random vibration: From 10 Hz to 2000 Hz Duration: $32 \mathrm{~h} /$ axis Acceleration: $6.9\left[\mathrm{~g}_{\mathrm{rms}}\right]$

Environmental tests - Electrical

Standard	Specification	FOCUS ON
$\begin{aligned} & \text { EN/EC 60204-1:2006 } \\ & + \text { A1:2009 + AC:2010 } \end{aligned}$	Safety of machinery - Electrical equipment of machines - Part 1: General requirements	- INDUSTRIAL AUTOMATION
EN/IEC 61000-6-1: 2007	Electromagnetic compatibility (EMC) - Part 6-1: Generic standards - Immunity for residential, commercial and light industrial environments	- INDUSTRIAL AUTOMATION
$\begin{aligned} & \text { EN/EC 61000-6-2: } 2005 \\ & + \text { AC:2005 } \end{aligned}$	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments	- INDUSTRIAL AUTOMATION
$\begin{aligned} & \text { EN/EC 61000-6-3: } \\ & 2007+\text { A1:2011 } \\ & + \text { AC:2012 } \end{aligned}$	Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments	- INDUSTRIAL AUTOMATION
EN/EC 61000-6-4: $2007+\text { A1:2011 }$	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards: Emission standard for industrial environments	- INDUSTRIAL AUTOMATION
ISO 16750-2:2012	Environmental conditions and testing for electrical and electronic equipment - Part 2: Electrical loads	- ROAD VEHICLES
ISO 7637-2:2011	Electrical disturbances from conduction and coupling - Part 2: Electrical transient conduction along supply lines only	- ROAD VEHICLES
ISO 7637-3:2007	Electrical disturbances from conduction and coupling - Part 3: Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines	- ROAD VEHICLES
CISPR 25 IEC:2008	Radio disturbance characteristics - Limits and methods of measurement for the protection of on-board receivers	- VEHICLE, BOATS AND INTERNAL COMBUSTION ENGINES
ISO 11452-1, 2, 4		

All electrical tests are conducted and radiated emission (EMC) tests.

[^0]: *AWG: American Wire Gauge

