

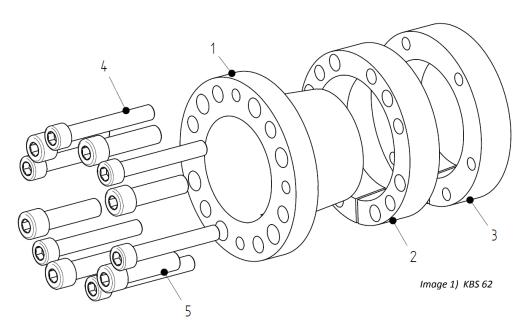
Locking Device KBS 62

The **KBS 62 Locking Device** is a frictionally engaged shaft-hub connection for cylindrical shafts and bores without keyway.

KBK Antriebstechnik GmbH Page | 1

Operating and Assembly Instructions

Locking Device KBS 62


Characteristics

- generally delivered fully assembled -
- self-centering -
- true-running accuracy 0,02 0,04 mm
- self-locking cone

Tolerances, Surfaces

- one accurate rotating process is sufficient: $Rz \le 16 \ \mu m$
- maximum permissible tolerance: d = h8/H8 Shaft/Hub

Components of locking device KBS 62

Component	Quantity	Description			
1	1	innerring (slotted)			
2	1	front pressure ring			
3	1	back pressure ring			
4	see cataloque	socket head screw DIN EN ISO 4762			
5	see cataloque	socket head screw DIN EN ISO 4762			

Contaminated or used locking devices have to be detached and cleaned prior to installation. Then apply a thin layer of a low-viscosity oil (e.g. Ballistol Universal Oil or Klüber Quietsch Ex)

Operating and Assembly Instructions Locking Device KBS 62

Assembly of the locking device

•

- Check the shaft- and hub position regarding the mandatory tolerance (h8/H8).
- Contact surfaces of the locking device as well as the contact surfaces of shaft and hub must • be cleaned (see image 2). Then apply a thin layer of low viscosity oil (e.g. Ballistol Universal Oil or Klüber Quietsch Ex).

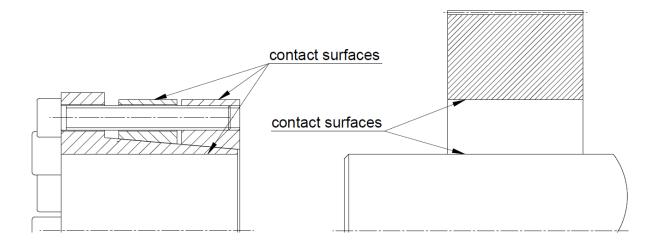


Image 2) Cleaning the Contact Surfaces

Do not use any oil, grease or sliding-grease paste reducing the coefficient of friction significantly. Oil-free assembly of the locking device cones may result in different values shown in the table and the values calculated.

Operating and Assembly Instructions Locking Device KBS 62

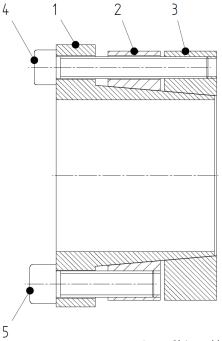


Image 3) Assembly of Locking Device

- Slightly loosen the clamping screws (4 and 5).
- Insert locking device KBS 62 between shaft and hub.
- Slightly tighten the clamping screws (4 und 5) manually and align the locking device with the hub.
- Tighten the clamping screws crosswise and evenly in several turns with the tightening torque specified in table 1. Repeat this procedure until a ¼-turn is no longer possible. Then tighten the clamping screws in sequence to the specified tightening torque.

Table 1:

Locking Device	KBS 62									
Thread size	M6	M8	M10	M12	M14	M16	M20	M24		
Tightening torque T _A [Nm]	17	41	83	145	230	355	690	1200		

Operating and Assembly Instructions Locking Device KBS 62

Disassembly of the locking device

Loosened of falling drive components may result in personal injury or damage to machines. Please secure the drive components prior to disassembly.

Image 4) Disassembly Locking Device

- Loosen all clamping screws evenly and in sequence (4 und 5) (*see image 3*) and unscrew them.
- Screw the clamping screws (5) into the draw-off thread (6) of the outer ring (1) (see image 4).
- Tighten clamping screws crosswise evenly with a ¼-turn. Increase the loosening torque gradually until pressure rings (2 and 3) are separated from the inner ring (1).
- Remove the loosened locking device between shaft and hub.

Non-observance of these instructions or non-consideration of operating conditions selecting the locking device may impair the function.

Disposal: Defective clamping devices must be cleaned and scrapped.